Unveiling the Past: LiDAR Technology's Role in Discovering Hidden Ar-chaeological Sites
DOI:
https://doi.org/10.35335/jiph.v12i1.28Keywords:
LiDAR technology, Archaeological discovery, Hidden sites, Cultural heritage, Non-invasive surveyAbstract
This research delves into the transformative role of LiDAR (Light Detection and Ranging) technology in archaeological exploration, with a primary focus on the discovery of hidden archaeological sites. LiDAR has emerged as a game-changing tool, offering unprecedented advantages in the field, including rapid data collection, the penetration of coverings and vegetation, and a non-invasive approach to archaeological research. Through this technology, a multitude of hidden archaeological features, such as lost cities, intricate urban planning, extensive road networks, agricultural practices, and defensive structures, have been unveiled. These discoveries have rewritten historical narratives, reshaped our understanding of the past, and underscored the significance of cultural heritage preservation and sustainable land use practices. LiDAR's efficiency and accuracy have enhanced the speed and precision of data collection, making it an essential tool for future archaeological studies. Its non-invasive nature respects the integrity of archaeological sites, and its multidisciplinary collaborations expand the horizon of research. The recognition of the cultural and spiritual significance of hidden archaeological sites, particularly in indigenous regions, has influenced future research approaches. Insights into ancient agricultural practices and sustainable land use have the potential to guide contemporary practices and environmental conservation. LiDAR technology continues to evolve, promising even more efficient and accurate data acquisition, thereby further deepening our understanding of the past and enhancing the future of archaeological research.
References
Aaltonen, G. (2021). Archaeology: Discovering the World’s Secrets. Arcturus Publishing.
Agapiou, A., Dakouri-Hild, A., Davis, S., Andrikou, E., & Rourk, W. (2022). The Kotroni Archaeological Research Project (KASP): evaluating ancient Aphidna using multimodal landscape analysis. Journal of Greek Archaeology, 7, 413–434.
Alday, A., Domingo, R., Sebastián, M., Soto, A., Aranbarri, J., González-Sampériz, P., Sampietro-Vattuone, M. M., Utrilla, P., Montes, L., & Peña-Monné, J. L. (2018). The silence of the layers: Archaeological site visibility in the Pleistocene-Holocene transition at the Ebro Basin. Quaternary Science Reviews, 184, 85–106.
Balm, R. (2015). Archaeology’s visual culture: Digging and desire. Routledge.
Cleere, H. (2005). Archaeological heritage management in the modern world (Vol. 9). Psychology Press.
Cohen, A., Klassen, S., & Evans, D. (2020). Ethics in archaeological lidar. Journal of Computer Applications in Archaeology, 3(1), 76–91.
Comer, D. C., Comer, J. A., Dumitru, I. A., Ayres, W. S., Levin, M. J., Seikel, K. A., White, D. A., & Harrower, M. J. (2019). Airborne LiDAR reveals a vast archaeological landscape at the Nan Madol World Heritage Site. Remote Sensing, 11(18), 2152.
Davis, D. S., & Douglass, K. (2020). Aerial and spaceborne remote sensing in African archaeology: A review of current research and potential future avenues. Spatial Approaches in African Archaeology, 9–24.
Dubayah, R., Knox, R., Hofton, M., Blair, J. B., & Drake, J. (2000). Land surface characterization using lidar remote sensing. Spatial Information for Land Use Management, 25–38.
Dyson, S. L. (1993). From New to New Age archaeology: archaeological theory and Classical Archaeology—a 1990s perspective. American Journal of Archaeology, 97(2), 195–206.
Ecke, S., Dempewolf, J., Frey, J., Schwaller, A., Endres, E., Klemmt, H.-J., Tiede, D., & Seifert, T. (2022). UAV-based forest health monitoring: A systematic review. Remote Sensing, 14(13), 3205.
Evans, D. H., Fletcher, R. J., Pottier, C., Chevance, J.-B., Soutif, D., Tan, B. S., Im, S., Ea, D., Tin, T., & Kim, S. (2013). Uncovering archaeological landscapes at Angkor using lidar. Proceedings of the National Academy of Sciences, 110(31), 12595–12600.
Evans, J. S., Hudak, A. T., Faux, R., & Smith, A. M. S. (2009). Discrete return lidar in natural resources: Recommendations for project planning, data processing, and deliverables. Remote Sensing, 1(4), 776–794.
Fagan, B. M., & Durrani, N. (2021). Archaeology: A brief introduction. Routledge.
Fagan, B. M., & Durrani, N. (2022). Archaeology: the basics. Routledge.
Grammer, B., Draganits, E., Gretscher, M., & Muss, U. (2017). LiDAR‐guided archaeological survey of a Mediterranean landscape: Lessons from the ancient Greek polis of Kolophon (Ionia, Western Anatolia). Archaeological Prospection, 24(4), 311–333.
Hadjimitsis, D. G., Agapiou, A., Themistocleous, K., Alexakis, D. D., & Sarris, A. (2013). Remote sensing for archaeological applications: management, documentation and monitoring. Remote Sensing of Environment-Integrated Approaches, 57–95.
Harrison, R., & Schofield, J. (2010). After modernity: archaeological approaches to the contemporary past. Oxford University Press.
Herreraa, V. M., Lobatoa, C. C., Carmonaa, J. Á. S., Muñozb, C. P., de Tena Reyb, M. T., Brunetc, T. C., Vallés, J., Irisoc, J. M. T. L., & Rosadob, E. Q. (2019). Radiography of an Iron Age hillfort: non-invasive archaeology in the settlement of Villasviejas del Tamuja (Botija, Cáceres).
Jarvis, W. E. (2015). Time capsules: A cultural history. McFarland.
Johnson, K. M., & Ouimet, W. B. (2014). Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR). Journal of Archaeological Science, 43, 9–20.
Kim, I., Martins, R. J., Jang, J., Badloe, T., Khadir, S., Jung, H.-Y., Kim, H., Kim, J., Genevet, P., & Rho, J. (2021). Nanophotonics for light detection and ranging technology. Nature Nanotechnology, 16(5), 508–524.
Kluitenberg, E. (2011). On the archaeology of imaginary media. Media Archaeology: Approaches, Applications, and Implications, 48–69.
McKeague, P., Corns, A., Larsson, Å., Moreau, A., Posluschny, A., Van Daele, K., & Evans, T. (2020). One archaeology: A manifesto for the systematic and effective use of mapped data from archaeological fieldwork and research. Information, 11(4), 222.
Morris, C., & Hunt, E. (1974). Reconstructing patterns of non-agricultural production in the Inca economy: archaeology and documents in institutional analysis. Bulletin of the American Schools of Oriental Research. Supplementary Studies, 20, 49–68.
Mounier, R. A. (2003). Looking beneath the surface: the story of archaeology in New Jersey. Rutgers University Press.
Nadal-Romero, E., Revuelto, J., Errea, P., & López-Moreno, J. I. (2015). The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees). Soil, 1(2), 561–573.
Nielsen, H. E. F., & Philpott, C. (2018). Depths and surfaces: understanding the Antarctic region through the humanities and social sciences. In The Polar Journal (Vol. 8, Issue 1, pp. 1–15). Taylor & Francis.
Offermann, P., Levina, O., Schönherr, M., & Bub, U. (2009). Outline of a design science research process. Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology, 1–11.
Opitz, R., & Herrmann, J. (2018). Recent trends and long-standing problems in archaeological remote sensing. Journal of Computer Applications in Archaeology, 1(1), 19–41.
Orser Jr, C. E. (2016). Historical archaeology. Routledge.
Psarros, D., Stamatopoulos, M. I., & Anagnostopoulos, C.-N. (2022). INFORMATION TECHNOLOGY AND ARCHAEOLOGICAL EXCAVATIONS: A BRIEF OVERVIEW. Scientific Culture, 8(2).
Risbøl, O., & Gustavsen, L. (2018). LiDAR from drones employed for mapping archaeology–Potential, benefits and challenges. Archaeological Prospection, 25(4), 329–338.
Risbøl, O., Langhammer, D., Schlosser Mauritsen, E., & Seitsonen, O. (2020). Employment, utilization, and development of airborne laser scanning in fenno-scandinavian archaeology—A Review. Remote Sensing, 12(9), 1411.
Roberts, B. W., & Linden, M. Vander. (2011). Investigating archaeological cultures: material culture, variability, and transmission. In Investigating archaeological cultures: Material culture, variability, and transmission (pp. 1–21). Springer.
Roman, A., Ursu, T., Lăzărescu, V., Opreanu, C. H., & Fărcaş, S. (2017). Visualization techniques for an airborne laser scanning‐derived digital terrain model in forested steep terrain: Detecting archaeological remains in the subsurface. Geoarchaeology, 32(5), 549–562.
Ronchi, D., Limongiello, M., & Barba, S. (2020). Correlation among earthwork and cropmark anomalies within archaeological landscape investigation by using LiDAR and multispectral technologies from UAV. Drones, 4(4), 72.
Rowlands, A., & Sarris, A. (2007). Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. Journal of Archaeological Science, 34(5), 795–803.
Sabloff, J. A. (2016). Archaeology matters: action archaeology in the modern world. Routledge.
Schindling, J., & Gibbes, C. (2014). LiDAR as a tool for archaeological research: a case study. Archaeological and Anthropological Sciences, 6, 411–423.
Trigger, B. G. (2003). Understanding early civilizations: a comparative study. Cambridge University Press.
Vaughan, A. (2015). Space, Settlement, and Environment: Detecting Undocumented Maya Archaeological Sites with Remotely Sensed Data.
Wang, X., Pan, H., Guo, K., Yang, X., & Luo, S. (2020). The evolution of LiDAR and its application in high precision measurement. IOP Conference Series: Earth and Environmental Science, 502(1), 12008.
Zhang, J., & Lin, X. (2017). Advances in fusion of optical imagery and LiDAR point cloud applied to photogrammetry and remote sensing. International Journal of Image and Data Fusion, 8(1), 1–31.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Roma Sinta Simbolon, Alday Comer

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.